
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2000; 33: 405–427

A finite element method for free surface flows of
incompressible fluids in three dimensions. Part II.

Dynamic wetting lines

Thomas A. Baera, Richard A. Cairncrossb,*, P. Randall Schunka, Rekha R. Raoa

and Phillip A. Sackingera

a Sandia National Laboratories, Albuquerque NM, U.S.A.
b Chemical Engineering Department, Drexel Uni6ersity, Philadelphia, PA, U.S.A.

SUMMARY

To date, few researchers have solved three-dimensional free surface problems with dynamic wetting lines.
This paper extends the free surface finite element method (FEM) described in a companion paper
[Cairncross RA, Schunk PR, Baer TA, Sackinger PA, Rao RR. A finite element method for free surface
flows of incompressible fluid in three dimensions. Part I. Boundary fitted mesh motion. International
Journal for Numerical Methods in Fluids 2000; 33: 375–403] to handle dynamic wetting. A generalization
of the technique used in two-dimensional modeling to circumvent double-valued velocities at the wetting
line, the so-called kinematic paradox, is presented for a wetting line in three dimensions. This approach
requires the fluid velocity normal to the contact line to be zero, the fluid velocity tangent to the contact
line to be equal to the tangential component of web velocity, and the fluid velocity into the web to be
zero. In addition, slip is allowed in a narrow strip along the substrate surface near the dynamic contact
line. For realistic wetting line motion, a contact angle that varies with wetting speed is required because
contact lines in three dimensions typically advance or recede at different rates depending upon location
and/or have both advancing and receding portions. The theory is applied to capillary rise of static fluid
in a corner, the initial motion of a Newtonian droplet down an inclined plane, and extrusion of a
Newtonian fluid from a nozzle onto a moving substrate. The extrusion results are compared with
experimental visualization. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: contact lines; finite element method; free surface; pseudo-solid mesh motion; simulation;
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1. INTRODUCTION

Even with a powerful numerical method of predicting free and moving boundary problems in
three dimensions [1], modeling practical problems with dynamic contact lines poses many
outstanding challenges. These contact lines represent the curve in three-dimensional space
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where liquid, gas, and solid meet. Wetting problems involve dynamic contact lines in which the
liquid is displacing the gas, or vice versa, along the solid surface. The approaches for treating
dynamic contact lines in two dimensions are not easily extended to three dimensions, both
conceptually and practically.

Wetting phenomena are often categorized as static or dynamic. Dynamic wetting involves
the relative motion of a fluid/solid/gas contact line and a solid that is forced by a large relative
velocity (i.e., plunging a substrate rapidly into a quiescent pool of liquid) or spontaneous by the
propensity of the liquid/gas/solid system to lower its free energy by advancing or receding on
a surface. Contact lines within all of these classes are common in manufacturing processes, like
continuous liquid film coating (forced wetting), soldering and brazing (forced and sponta-
neous), flow in porous media (forced and spontaneous displacement), and many other
technologically important areas. For decades researchers have attempted to contrive contin-
uum models that are useful to engineering analysis, which simulate the true physics; however,
all of the models have implementation aspects that have been simplified to two dimensions,
where a true contact line becomes a point. At that point, the theoretical treatment of wetting
is categorically static or dynamic, a classification that greatly simplifies implementation in a
model. In three dimensions it is often the case to have both of these extremes active along a
single contact line, and even worse, the local wetting regime will span a large range of local
capillary numbers, from static to dynamic. In this paper we present generalizations of what is
well established as acceptable ad hoc procedures for modeling static and dynamic contact lines
in two dimensions so that they can be applied in three-dimensional situations.

The physical differences between static and dynamic wetting regimes are important to the
approach taken here. Static wetting lines at which two fluids (usually gas and liquid) meet at
a fixed curve on a solid boundary are nicely described from a hydrodynamic viewpoint as a
nearly stagnant region at which the fluid mechanics are unimportant, i.e., typically trivial
Dirichlet conditions on the velocity components suffice. A static contact angle can be
considered a thermodynamic property [2], although it may be a complex function of the
underlying chemical make-up and structure of the surface, which often leads to hysterisis
effects. Dynamic wetting lines at which one fluid displaces the other along the solid boundary
are another matter. A dynamic wetting angle is not a thermodynamic property, but the result
of a complex interplay of a variety of non-equilibrium processes. First and foremost are the
local hydrodynamics around an advancing or receding wetting line. Those hydrodynamics
include both the fluid mechanics in the displacing fluid and in the receding fluid. Then there
are the surface tension-related phenomena on the fluid–fluid interface near the contact line.
The usual static wetting forces are present at low capillary numbers, and there is the possibility
of surface gradients due to the presence of surface active species or temperature gradients.
Finally, somewhere and somehow near the three-phase line some mechanism equivalent to
fluid slip on the solid surface must be operative in order to relieve the otherwise singular stress
that would result (the so-called rolling motion regime is an exception [3]).

The mathematical condition that is used most often in computational analysis of free surface
flows for determining the surface position is the so-called kinematic surface condition [1].
Local surface kinematics near a dynamic contact line as governed by this condition have
important implications on speed of the liquid parcels on the surface and those adhered to the
substrate around a dynamic contact line. Without evaporation, the kinematic condition
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demands that the air–liquid surface be a material stream surface right up to the contact line.
If the liquid cannot penetrate the solid, as is usually the case, an additional condition of
impenetrability must be applied. For both of these conditions to be true, the liquid velocity
immediately at the wetting line and the velocity of the wetting line itself must be the same. For
steady flow in two dimensions this implies zero velocity. However, the velocity at the contact
line must also be the substrate velocity if no-slip is enforced to include the contact line. This
situation of double-valued velocities has been termed the ‘kinematic paradox’, as coined by
Kistler [4], and is a situation that demands some liquid slip at the moving solid surface. Only
for the case of a 180° contact angle is it possible to satisfy all conditions at the contact line
simultaneously. This situation is often referred to as the rolling motion condition [3]. For
angles other than 180°, researchers have adopted several approaches in finite element or finite
difference applications as discussed below.

The most common approach restricts the analysis to conventional continuum theory at
macroscopic length scales. It removes the multi-valued velocity at the wetting line by ad hoc
boundary conditions that allow slip at the line (i.e., the liquid velocity at the wetting line is the
same as that of the line) and partial slip nearby, and prescribes a contact angle that is supposed
to represent an apparent dynamic contact angle of the sort observed in experiments, possibly
taken from an empirical correlation. This approach permits computed prediction of realistic
wetting processes [5]. There are many pitfalls to this approach, which should be considered (see
Christodoulou et al. [6]), but nonetheless it is this approach we extend here to three
dimensions. It is true, for instance, that the mesh refinement required to resolve this set of
conditions is exceedingly large, especially in three dimensions, and this casts some doubt to the
accuracy of the angle being applied, as the microscopic angle may be drastically different.

Other approaches have overcome the need to specify perfect slip at the putative wetting line
by exploiting the weak form of the Galerkin weighted residual equations [4] or by taking
advantage of collapsed elements that give multiple coincident nodes at the contact line [7;
Christodoulou KN, Scriven LE. Singular elements at dynamic wetting lines. Unpublished
1990]. Although these techniques work well in two dimensions, they undermine severely the
mesh convergence of the flow field around the contact line and are impractical in three
dimensions due to difficulties in mesh generation and manipulation along a three-dimensional
contact line (perhaps the double-valued velocity at the contact line achieved with collapsing
elements is a possibility).

Two other approaches are worthy of mention. The first adheres to the use of standard ad
hoc boundary conditions at a contact line, i.e., prescribed contact angle and local slip flow, but
imposes a sub-microscopic static angle and systematically refines the mesh to permit a local
analysis [8–10]. This procedure works well for a small capillary number, but is limited at larger
ones. This limitation is unfortunate as the approach shows promise in three dimensions. The
second approach seeks to resolve the sub-microscopic physics of dynamic wetting. It incorpo-
rates a refined model for the local air displacement mechanism right into a macroscopic
computation, and thereby attempts to provide realistic boundary conditions for the macro-
scopic flows. Some have attempted this approach at realistic conditions [11] but the challenges
of dealing with meshing distortion in three dimensions are enormous.

To date there have been several significant published works in three dimensions that are
important to mention here, as they set an important precedent. Dimitrakopoulos and Higdon
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[On the displacement of three-dimensional fluid droplets from solid surfaces in low-Reynolds
number shear flows. Journal of Fluid Mechanics 1998; 377: 189–222] employed boundary
element formulations to determine the configuration of a three-dimensional droplet just prior
to motion. An experimental work by Extrand and Kumagai [12] considered a similar topic.
Two related papers [13,14] sought perturbation solutions to finding the shape of a droplet
down an inclined plane with and without hysteresis in the contact angle model. Finally, a
recent theoretical paper by Schwartz and Eley [15] presents a technique for simulating the
motion of very small droplets on heterogeneous surfaces where surface tension forces
dominate.

In the first section below we begin with a generalization of the so-called kinematic paradox
to three-dimensional contact line motion. Although obvious in hindsight, the implementation
requires a variable contact angle model. We formulate a linear relation between the local
contact angle and the local wetting speed, or local capillary number. This model or the
equivalent is necessary in nearly every situation as the local wetting speed often varies greatly
along a moving contact line, even diminishing to a point at which the line becomes static
relative to the moving surface. The next section discusses implementing these concepts and
models into a Galerkin finite element code. Finally, we present three examples to demonstrate
the new model The first involves the capillary rise of fluid in a corner geometry, the second the
motion of a drop down an inclined surface, and the third the lay-down of a liquid bead on a
moving substrate. The important feature of the last two problems is that the wetting regimes
vary from static to dynamic along the contact line.

2. PHYSICAL THEORY OF A WETTING LINES IN THREE DIMENSIONS

2.1. The kinematic paradox in two dimensions

In two dimensions the contact line is represented as a single point where the free surface
intersects a moving substrate boundary. The kinematic condition imposed on the free surface
imposes a purely tangential flow velocity along it. The impenetrability and no-slip constraints
associated with the moving substrate impose a fluid velocity at the contact line that is parallel
to the substrate boundary. For any contact angle other than 180°, these two requirements are
incompatible and require that two velocities exist at the contact line in order to satisfy both
simultaneously. This incompatibility is often referred to as the ‘kinematic paradox’. It is a
paradox in the sense that a fluid particle arriving at the wetting line will be faced with two
possible velocities and hence two possible future trajectories. Because conventional models of
fluid flow do not typically consider this possibility, the result is a singularity in fluid stress
when an attempt is made to apply them at the wetting line.

To resolve this paradox, it is often suggested that there are wetting forces locally near the
contact line (on the sub-grid scale), which induce a spreading velocity of the fluid, which, at
steady state, exactly cancels the motion of the substrate and results in zero velocity of the fluid
in the fixed frame of reference when viewed on the scale of the problem. In effect, this model
of wetting phenomena does not attempt to resolve the intricate details of the wetting zone
regions, but instead recognizes that from a sufficient distance the motion of the fluid at the
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contact line has little influence elsewhere and therefore can be considered stationary. However,
since the fluid at the wetting line now has a velocity different from the substrate, it is necessary
to also include a region near the wetting line where slip is permitted. The next section extends
this notion to a three-dimensional wetting line.

2.2. Generalization to a contact line in three dimensions

Figure 1 shows a typical free surface geometry near the wetting line. The web surface has a
normal vector, nw, and is moving at velocity uw. The free surface intercepts the substrate at a
dynamic contact line with unit normal and tangent vectors, ncl and tcl, both of which are
orthogonal to nw, i.e., in the plane of the substrate.

To circumvent the kinematic paradox in three dimensions, we recognize that, as in two
dimensions, slipping of the fluid at the contact line must be permitted; we define the wetting
velocity, uwet to be the normal component of the fluid velocity at the contact line relative to the
substrate

uwet=ncl · (u−uw) (1)

We assume that the wetting velocity in three dimensions is the same as the wetting velocity
under similar conditions in two dimensions and that curvature effects are negligible along the
contact line. Because the contact line is curved in three dimensions, the wetting speed must
vary along the contact line, as discussed below.

For steady state problems, the wetting velocity is equal in magnitude but opposite in sign to
the component of the substrate velocity normal to the wetting line, or

uwet= −ncl · uw (2)

that is, the fluid wets outward as fast as the substrate carries it in. It is this condition that
permits a smooth transition along the wetting line from dynamic behavior to static behavior,
where the substrate moves parallel to the wetting line and the wetting velocity is zero. When
Equation (2) is substituted into Equation (1), it is found that the fluid velocity at the contact
line, u, does not have a component normal to the contact line

Figure 1. Schematic of general three-dimensional dynamic wetting line with vector definitions.
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ncl · u=0 (3)

We call this the edge kinematic condition for steady state problems. Recall that ncl is a unit
vector normal to the wetting line in the plane of the substrate.

An additional assumption is that the fluid slips only normal to the contact line and does not
slip tangentially. More precisely, the physics of wetting at the wetting line do not induce
tangential velocity in the fluid, which is different from the tangential velocity of the substrate.
Thus

tcl · u= tcl · uw (4)

By this equation, the fluid velocity tangent to the contact line varies with the contact line
orientation and once again permits smooth transition from a dynamic wetting line to a static
wetting line, where the fluid at the wetting line moves with the same velocity as the substrate.

Finally, in most problems of interest, the fluid does not penetrate into the substrate

nw · u=0 (5)

Equations (3)–(5) constitute three constraints on the velocity that replace the fluid momentum
equation along the contact line in steady state problems and allow us to resolve the paradox.
However, they apply only when the contact line is not moving in time. In transient problems,
the model of the wetting velocity must now include the normal component of the mesh velocity
at the contact line, x; fs

uwet= −ncl · uw+ncl · x; fs (6)

and Equations (3)–(5) generalize as follows:

ncl · (u−x; fs)=0, tcl · u= tcl · uw, and nw · (u−x; fs)=0 (7)

The tangential motion of the mesh at the contact line has no physical meaning and so is left
out of the tangential constraint on the fluid velocity. It is clear that the transient relations
reduce to the steady state relations when x; fs=0.

2.3. Variable contact angles for three-dimensional dynamic contact lines

To illustrate and test the requirements for a three-dimensional contact line model, we consider
a droplet of fluid descending an inclined plane at a constant velocity. At the leading edge of
the droplet, the contact line is ad6ancing with respect to the substrate at a constant velocity.
At the trailing edge, the contact line is receding at the same constant velocity. At all other
points, the contact line advances or recedes normal to itself at velocities that are some fraction
of the overall speed of descent. There are at least two points where it neither advances nor
recedes (in the normal direction). Assuming a constant wetting speed around the edge of the
droplet would result in an unrealistic prediction of a droplet the spreads without bound.
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Furthermore, there is a wealth of experimental evidence that, for a given fluid in contact
with a given substrate, indicates the dynamic contact angle is most dependent upon its rate of
advance or recession (see Blake and Ruschak [16]). This rate can be expressed as the normal
component of the relative velocity of the free surface at the contact line and the substrate

x; wet=ncl · (x; fs−uw) (8)

Therefore, all things being equal, the contact angle at any point on the contact line is a
function of x; wet and the hydrodynamic properties of the fluid

u= f(x; wet, Ca) (9)

u is the dynamic contact angle as illustrated in Figure 2 and Ca=mV/s is the capillary number
based on a reference velocity V. Thus, the contact angle varies along the contact line. This fact
can be easily observed by studying the motion of a raindrop down a windshield and has been
suggested previously by other researchers [13; Dimitrakopoulos P, Higdon JJL. Submitted]. It
is perhaps noteworthy that Equation (8) is nearly identical to Equation (6) suggesting an
alternative statement of the wetting line model would be uwet=x; wet.

We define a local capillary number, CaL, which varies along the wetting line, as

CaL=Ca
x; wet

V
=Ca ncl ·

�x; fs−uw

V
�

(10)

With this definition, an advancing wetting line corresponds to CaL\0, while a receding line
corresponds to CaL\0. Reports in the literature propose many different relationships between
dynamic contact angle and wetting speed; they are normally expressed in terms of the capillary
number. The results are typically for two-dimensional flow systems so there is usually only a
single capillary number associated with the entire contact line. In addition, the results often
only apply to advancing or receding contact lines, or apply only over a limited range of
capillary numbers, e.g., References [17–19]. To ensure computational robustness a relation
is needed that is applicable simultaneously to advancing and receding contact lines and is valid
over a large range of capillary numbers. Such a correlation was not immediately available in
the literature. Indeed there is evidence that measured dynamic contact angles are also

Figure 2. Schematic depiction of local contact angle with substrate and free surface normals.
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dependent upon the flow geometry itself [20]. Thus, a correlation developed for contact angles
from a plunging tape device, for example, might not be appropriate for other problems.

Instead, we used an admittedly simplistic but computationally tractable linear model, as
suggested by Kister [21]

nw · nfs=cos u=cos us−cTCaL=cos us−cTCa
x; wet

V
(11)

u is the contact angle, us is the static contact angle (when x; wet=0), and cT is a proportionality
constant. The vectors nw and nfs and the contact angle are depicted in Figure 2 for a
two-dimensional contact line. Note that Equation (11) can also be used to set a fixed contact
angle by setting cT=0.

Equation (11) is strictly applicable only for �CaL��1. It is also hampered because it can
predict contact angles that are greater than 180° or less than 0°. Furthermore, this model does
not account for certain well-known phenomena, like contact angle hysteresis or critical contact
angles. However, the primary goal of this current work was the development of an effective
and efficient method for finding the solution of problems with three-dimensional dynamic
contact lines. The linear model provides the essential features of varying contact angles and
wetting speeds while being easy to implement computationally. In the future the linear model
could be generalized.

3. FINITE ELEMENT FORMULATION

Part I [1] of this two-paper series provides details of the governing partial differential equations
and corresponding finite element formulation. The description is extended here to include the
application of boundary conditions specific to dynamic wetting lines.

Over the portion of the solid substrate in contact with the liquid, except for a thin region
near the dynamic contact line, we assume no-slip between the substrate and the fluid. The
no-slip conditions are applied as Dirichlet conditions. In a thin region of the solid substrate
boundary near the dynamic contact line we allow tangential slip using the Navier slip
condition

nw · T · t=
1
g

(u−uw) · t (12)

The weighted residual of Equation (12)&
A

fiebn : Tin dA=
&

A

fi

1
g

eb · (u−uw) dA (13)

replaces the boundary term appearing in the weak form of the momentum equation described
in Part I [1]. Note that the normal component of Equation (13) is never used because the
impenetrability constraint (5) replaces the normal component of the momentum equation that
contains it.
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A planar shape of the solid substrate boundary is imposed by a plane condition as discussed
in Part I [1]

Ri
d,n=axi+byi+czi+d (14)

Along the dynamic contact line, three boundary conditions are needed on both the fluid
momentum equation and the pseudo-solid mesh motion equation. Equations (7) replace the
three components of the momentum equation on the dynamic contact line. These equations
represent no-penetration into the substrate, no-slip tangential to the contact line, and the edge
kinematic condition. Because all three components of the momentum equation are replaced by
boundary conditions, rotation of the momentum equation at the contact line is not necessary.
The impenetrability condition is applied as a Dirichlet condition; i.e., the velocity component
normal to the substrate is explicitly set to zero. The no-tangential slip condition and edge
kinematic condition are applied as point collocated boundary conditions at Gauss integration
points along the contact line, i.e., the boundary conditions are evaluated at these discrete
points along the contact line of the element edge and used to replace the fluid momentum
equations of the nodes on the element edge.

The contact angle condition of Equation (11) and the geometric shape of the substrate (as
in Equation (14)) constrain the mesh motion along the contact line. To allow the mesh to
redistribute tangentially along the contact line, we rotate the components of the pseudo-solid
mesh motion equations into components normal to the substrate, tangent to the contact line,
and binormal to the contact line (outward pointing normal in plane of substrate)

Æ
Ã
Ã
Ã
È

Ri
n

Ri
t

Ri
b

Ç
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
È

nw,i
T

t cl,i
T

n cl,i
T

Ç
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
È

Ri
x

Ri
y

Ri
z

Ç
Ã
Ã
Ã
É

(15)

nw,i is a vector normal to the substrate surface at node i, tcl,i is vector tangent to the dynamic
contact line, and ncl,i=nw,i× tcl,i is a binormal vector that is perpendicular to both nw and tcl

and outward pointing from the wetting line in the substrate surface. Part I [1] discusses the
calculation of these nodal unit vectors.

Along the dynamic contact line, the normal component of the rotated pseudo-solid mesh
motion equation is replaced by the planar boundary condition (14) as discussed in Part I [1].
The contact angle condition (11) is applied as a weighted residual equation integrated along
the contact line&

S

fi(cos u− (cos us−cTCaL)) dS=0 (16)

This weighted residual replaces the binormal component of the pseudo-solid mesh motion
equation. The local capillary number is calculated according to Equation (10). We retain the
remaining tangential component of the rotated pseudo-solid momentum equation to allow the
nodes to slide freely along the dynamic contact line. If this step is omitted, spurious sources of
mesh stress will be introduced at the contact line.
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4. RESULTS

4.1. Capillary rise in a corner

When a fluid wets the walls of its container, the meniscus rises near the wall to balance
gravitational and capillary forces. Results of the meniscus shape are well tabulated for
two-dimensional problems, where the free surface is a curve. Brown [22] and others have
calculated the shapes of menisci for three-dimensional problems without gravity, where the
mean curvature is constant. We use capillary rise with gravity as a simple test problem for the
contact angle formulation discussed above. Figure 3 shows predictions of the meniscus shape
for capillary rise in a box at various contact angles. The container is a box with smooth,
vertical walls; the solution is obtained for quarter of the box by imposing symmetry at the
vertical mid-planes. There is no-slip of the fluid on the box walls, and at steady state the
velocity is zero everywhere within numerical accuracy. The bottom of the box is an open
boundary with a specified pressure; this pressure and the external pressure determine the depth
of liquid in the box (Dp=rgh).

The top surface of the fluid is the free surface that moves to balance capillary and pressure
forces via the capillary condition and to conserve mass via the kinematic condition. The side
walls, symmetry planes, and bottom boundary restrict the mesh position by geometric plane
conditions. The free surface intersects the symmetry planes at a right angle and intersects the
walls at specified contact angles. In the corner where the walls meet, two contact angle
conditions, two geometric planar conditions, and the kinematic condition all apply to the mesh
equation at the same point. However, only three independent boundary conditions can apply
to the pseudo-solid mesh motion equation at any point, so two of the boundary conditions
need to be eliminated there. We tested several choices of boundary conditions at this corner
and determined that the most effective method is to apply both the geometric planar
constraints and the kinematic condition. Nevertheless, the contact angle conditions are still
well satisfied up to the corner.

The predictions in Figure 3 show that the meniscus rises near the walls due to fluid wetting
but becomes nearly flat at the center of the box. The meniscus rises highest in the corner due
to additional curvature from bending the rising meniscus around the corner, i.e., near the

Figure 3. Predictions of capillary rise in a box with various values of the contact angle between the free
surface and the walls of the box. The pressure distribution is hydrostatic. Contact angles are labeled on

each plot.
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corner the second radius of curvature contributes significantly to the pressure drop across the
interface. Far from the corner, the second radius of curvature is nearly infinite and the
meniscus shape approaches that of a translationally symmetric interface. As the contact angle
decreases (fluid wets solid better), the fluid wicks higher onto the walls and into the corner.

The contact angles on the two walls do not have to be equal. Figure 3 shows the capillary
rise near a corner between two walls with contact angles of 60° and 120°. In this case, fluid
rises on the wall with a contact angles of 60° and descends on the wall with contact angle of
120°. In the corner where the walls meet, the meniscus height is equal to the height of the
meniscus at the center of the box. This is a simple example demonstrating the application of
our contact angle formulation to three-dimensional free surface problems. In the next two
sections we apply the formulation to problems with fluid flow.

4.2. Initial motion of droplet down an inclined plane

The motion of a droplet down an inclined plane is a problem that, despite its prosaicness, has
not received much attention. Dussan and Chow [13] developed perturbation solutions valid for
small capillary numbers, contact angles, and inclinations to the critical configuration for
motion and the configuration for steady state motion. Later, Dussan [14] extended this work
for arbitrary contact angles. Dimitrakopoulos and Higdon (submitted) used boundary element
methods to also compute the critical configuration prior to motion.

The contact line conditions discussed previously have been applied to the motion of an
initially quiescent droplet down an inclined plane. Figure 4 shows the initial droplet shape and
the finite element mesh employed in the solution. This configuration was obtained from an

Figure 4. Mesh and starting configuration of droplet motion calculation. Note that (a) is an oblique view
from above of the drop’s upper surface; (b) is an oblique view from below of the drop’s underside. We
note that actual computational domain differs from this figure in that only the domain for which y]0

was used as discussed in the text.
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originally hemispherical shape. A gravitational acceleration was applied along the z-axis and
the droplet was allowed to deform over time to the final shape shown in Figure 4. The
computational domain used was actually only half of the region shown in Figure 4, since the
x=0 plane was taken as a symmetry plane. This had the benefit of reducing the number of
unknowns for this lengthy transient calculation and also provided determinacy to the mesh
displacement unknowns. Without this step, unphysical rotary modes of mesh motion about the
z-axis could appear in the phase of the calculation when there was no inclination.

The free surface of the droplet is subject to the kinematic constraint

n · (u−x; fs)=0 (17)

No-slip was enforced on the underside of the droplet, except in a narrow annular band of
elements adjacent to the contact line. On these elements, the Navier slip condition (12) was
employed. Its purpose was to permit transition from the no-slip condition in the interior to the
contact line velocity conditions described in an earlier section. The slip coefficient, g, was taken
as 0.01.

During the computation it became necessary to ‘anneal’ the mesh. It was observed that as
the droplet moved further and further from its starting point, the larger and larger displace-
ments would begin to inhibit convergence of the iterative solver. It was, therefore, necessary
periodically to update the co-ordinates of each node with its respective displacement vector
and restart the problem with a zero displacement field, effectively removing the mesh stresses.
The velocity and pressure fields, however, were not changed. This is a viable procedure because
ultimately it is the position of the mesh nodes and not their displacement from a reference state
that interacts with the other unknown fields.

On the contact line, the momentum equations were replaced by the three conditions given
in (7). Since the substrate is motionless for this transient problem, the web speed, uw, was set
to zero. This linear relationship between the contact angle and the local capillary number (11)
was used to determine the local contact angle. For this example calculation, ad hoc values for
the parameters in this model were chosen. The static contact angle us was set at 90° and the
linear constant cT at 0.99. The latter value is somewhat meaningless but for the fluid modeled
it would result in a 180° contact angle at a droplet speed of 720 cm s−1. Thus, the contact line
is fairly slippery.

The fluid modeled had physical properties similar to water: r=1 g cm−3, m=0.1
dyn s cm−2, and s=72 dyn cm−1. The viscosity is roughly ten times that of water at room
temperature and this value was chosen to mitigate inertial effects on the mesh distortion in the
initial computation from the hemisphere to the stable deformed shape.

At time zero, a gravitational acceleration vector is rotated 30° towards the x-axis, i.e., the
substrate is tipped 30° downward in the x-direction. The subsequent motion is depicted in
Figure 5, which shows side and planform views of the droplet at several times. Note the size
of the grid scale. Overall fluid tends to shift to its downhill side and the droplet becomes
elongated longitudinally. Ultimately, a ‘rooster tail’ appears in the free surface at the trailing
edge. This more than likely is the distortion in the mesh in this region. A remeshing of the
domain would be required to continue. This was not done.
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4.3. Laydown of a bead on a mo6ing substrate

Another problem that includes a three-dimensional dynamic contact lines is the extrusion of
a liquid onto a moving substrate. We refer to this as the ‘bead laydown’ problem. Exam-
ples of this type of process can be found in fields as diverse as free-casting of complex
parts to food processing. It is a challenging problem because the contact angle on the
horseshoe-shaped contact line changes continually from a maximum value at the leading
edge, where the motion of the substrate is perpendicular to the line, to a static value
downstream of the nozzle, where the motion of the substrate is parallel to the contact line
and the fluid moves as a rigid body along with the substrate.

Figure 6 depicts the geometry and the starting shape of the finite element mesh. The
proportions shown are based upon an actual experimental apparatus with a D=0.127 cm
nozzle diameter. The nozzle lies 0.89D above the substrate and the horizontal portion of
the mesh extends approximately 5D downstream of the nozzle. The y=0 plane is a symme-
try plane, and this was exploited to reduce the number of unknowns by solving only
one-half of the problem. The mesh shown in Figure 6 contains 2691 elements, 3296 nodal
points, and 23 072 unknown degrees of freedom.

The boundary conditions applied to this mesh are depicted in Plate 1. No-slip is applied
on the walls of the nozzle. The kinematic condition (17) is enforced on the free surface as
shown; the free surface deforms to satisfy this constraint. On the symmetry plane, zero
normal velocity is enforced; otherwise, the fluid is allowed to slip tangentially on this
boundary. On the underside of the mesh, where the fluid adheres to the moving substrate,
no-slip between substrate and fluid is enforced except along a narrow band of elements
adjacent to the contact line. As in the case of the droplet problem, a Navier slip condition
is applied in this region. The conditions applied along the contact line to the momentum
and pseudo-solid mesh equations are the same as those applied in the droplet problem but
changed for steady state conditions.

A study examining the effect of several input parameters was conducted. The fluid
modeled was based upon a silicon oil standard fluid with density of 1 g cm−3 and viscosity
1024 P. These properties were fixed, but the surface tension was varied to obtain different
values of the global capillary number. The surface tension values considered were in general
much larger than the actual fluid’s for reasons that will be discussed below. Contact angle
data were not available. Instead, the parameters of the contact angle model were varied in
order to study the effects of the contact angle model. However, the parameters were not
varied independently. For a given static contact angle, the slope parameter cT was adjusted
so the contact angle at the leading edge of the bead would always be 175°. This was done
to reflect the experimental observation for this highly viscous fluid, which the contact angle
at the leading edge was generally very close to 180°.

The results of this parameter study are shown in Figures 7–9. Each figure gives three
different views of the free surface shape: from the left to right, front, side, and underside or
webside. The underside views are presented in a split view format; one half the domain is
shown in ‘hidden view’ format, but the other half is shown in ‘wire-frame’ format. This
allows for locating the contact line with respect to the inlet nozzle.
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Figure 6. Mesh and initial undeformed geometry used in bead laydown computation. Since y=0 is a
symmetry plane, only one half the problem needed to be solved.

Figure 7 shows the effect of changing the ratio of the average inlet liquid velocity to
substrate speed on the steady free surface shape. The static contact angle was fixed at 110°.
The capillary number based upon the speed of the web was 1.0. The ratio of average inlet
liquid velocity to web speed presented are, from top to bottom, 1.0, 1.6, 2.5, and 3.2
respectively. The behavior is generally what one expects. As the inlet flow is increased with a
fixed web speed, the fluid tends to pile up around the nozzle, billowing to the sides and ahead
of the nozzle. At the highest ratio, the contact line has advanced almost one-half a diameter
ahead of the nozzle. In addition, the contact line contracts back towards the symmetry plane
at a distance downstream from the nozzle. This is accompanied by the ridgeline of the bead
rising to a height that is greater than the gap between nozzle and substrate. This behavior is
a consequence of the relatively high surface tension present, which tends to contract the bead
from its spayed out configuration in the vicinity of the nozzle to a more hemispherical
configuration downstream where the influence of the nozzle has disappointed.

Figure 8 shows the influence of surface tension on the free surface shape. At a speed ratio
of 1.6, the figure depicts the response at capillary number of 0.5, 1.0, and 2.0. Again the static
contact angle was fixed at 110°. Although the changes in the free surface shape are smaller
than the previous case, it is clear and expected that the liquid tends to spread out more as the
capillary number increases, i.e., as an effect of the diminished surface tension. It is worth
noting that convergent results were not obtained for Ca greater than approximately 2.0.
Surface tension has the effect of stabilizing the free surface; as it is decreased, oscillations tend
to appear in the free surface. This was especially true for the mesh used in this study. Because

Figure 5. Planform and side views of initial droplet acceleration down 30° inclined plane at several time
points. For scale, the grid appearing on the views is 1 cm on a side. Note the distortion of the mesh at

the trailing edge at the last time values.
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Figure 7. Effect of average inlet fluid velocity to web speed ratio on free surface shape at Ca=1.0. From
top to bottom, ratio values are 1.0, 1.6, 2.5, and 3.2.
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Figure 8. Effect of surface tension on shape of bead laydown free surface shape. From top to bottom,
global capillary numbers are 0.5, 1.0, and 2.0. The inlet to web velocity ratio is 1.6.

of the large distortion on the free surface, the elements at the leading edge near the contact line
had become large in the dimensions parallel to the web but very narrow in the direction
perpendicular to it. Oscillations were observed on a portion of the free surface including these
elements. This is the reason that the actual surface tension of the silicon oil could not be used;
its high viscosity resulted in too large a capillary number. Although not undertaken here, this
problem may be alleviated by better refinement of the area nearest the contact line.

Finally, Figure 9 shows the influence of the static contact angle. Here, the slope of the
contact angle model was not set to ensure a specific contact angle at the leading edge, but
instead held constant. The ratio of inlet average liquid velocity to web was again 1.6 and the
surface tension of the fluid was set to give a capillary number of 1.0. The views shown in this
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Figure 9. Effect of static contact angle on shape of bead laydown free surface shape. From top to
bottom, static contact angle values are 110°, 80°, 60°, and 45°. The inlet velocity to web velocity ratio is

1.6.
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Plate 1. Boundary conditions applied to bead laydown domain.

Plate 2. Axial velocity component parallel to motion of web on interface plane between fluid and
substrate. View is at the underside. Ratio of inlet average velocity to web speed: 3.2, global capillary

number: 1.3.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33(3)



FE METHOD FOR FREE SURFACE FLOWS. PART II 423

figure are for static contact angles of 110°, 80°, 60°, and 45°, top to bottom. The front view
clearly shows the strong influence of this parameter at the downstream outlet, where the
normal contact line velocity is smallest. Near the nozzle its influence is less, although still
noticeable. The results are also in agreement with our expectations: the liquid spreads out to
a greater extent for the lower static angles, which imply a greater propensity for wetting. The
influence of the slope parameter cT was also conducted; however, it was found that it did not
have a tremendous effect on the overall shape of the free surface.

4.4. Comparison with experiments

We have made some preliminary steps towards direct comparison of these simulations with
experiment. A second standard silicon oil was chosen for visualization. Its viscosity is 126.4 P.
Its density was found to be 1 g cm−3 and a value of 20 dyn cm−1 for surface tension was
obtained from the literature as a typical value [23]. Because of its (relatively) low viscosity,
consistency could be achieved between experimental global capillary numbers and those
accessible to numerical computations (unlike the previous set of computations). By extruding
this fluid onto a moving glass platform, records could be made of the shape of the free surface
and the shape and location of the dynamic contact line over a range of flow rates and table
speeds. Figure 10 shows the results at one flow rate and table speed. The average inlet velocity
was 0.64 cm s−1 and the web speed was 0.2 cm s−1, i.e., the ratio of inlet liquid flow rate to
web speed was 3.2. The inside nozzle diameter in this case was 0.137 cm. The capillary number
computed from the speed of the web was 1.3. A 90° static contact angle was used in the
simulation. This value was chosen because, lacking any additional data, it would have the
smallest potential error, namely 90°, of any other value. The value for cT was obtained from
the static contact angle as explained above.

In general, the qualitative shape of the computed contact line is similar to the experimental
observation in that both are smoothly varying and parabola-shaped. However, the calculated
contact line lies well in advance of the nozzle exit. In contrast, the experimental contact line
is almost directly below the upstream side of the nozzle exit. Further, the lateral spread of the
computed contact line extends more than a nozzle diameter away from the centerline plane.
The experimental contact line extends outward to a lesser extent. Comparison of bead ridge
behind the nozzle cannot be made because the actual fluid has wetted up the backside of the
nozzle obscuring this portion of the photo.

That the agreement is less than desirable is attributable to at least two possibilities. First, the
distortion of the elements in the vicinity of the contact line leading edge (i.e., the front) has
expanded the region where the Navier slip condition is applied to an extent that is probably
unreasonable. Plate 2 shows the computed axial velocity of the fluid on the interface between
fluid and moving web. Over most of the region this component is uniformly the web speed, as
it should be, but over a significant region near the leading edge of the bead, it differs
significantly from the web speed. This could have the effect of allowing the contact line to
advance ahead of the nozzle contrary to the experimental evidence. Second, as noted above,
the contact angle model is probably too simplistic. While it captures the gross features needed
in a contact angle model, it probably fails to predict detailed dependencies on the wetting
parameters. A more realistic behavior is depicted in Figure 11, where the contact angle changes
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Figure 10. Comparison of experimental visualization of bead laydown free surface shape (top line) and
corresponding computed results (bottom line). Ratio of inlet average velocity to web speed: 3.2, global

capillary number: 1.3. White line indicates location of free surface and/or dynamic contact line.

rapidly for values of capillary number nearest to zero, but approaches constant values as the
local capillary number becomes larger. Finally, we note that the parameters in the contact
angle model were not based in any quantitative way on actual observations, but chosen for the
most part arbitrarily. Given these limitations it is not surprising that agreement is lacking.

5. DISCUSSION

This work extends the body-fitted three-dimensional free surface method described in Part I
[1], to include problems that possess three-dimensional static and dynamic wetting lines. Static
wetting lines are described by single static contact angle along each wetting line. Dynamic
wetting lines are more complicated for several reasons. The kinematic paradox needs to be
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Figure 11. Sketch of features that would be appropriate to a more physically accurate contact angle
model.

circumvented appropriately in three dimensions. Our approach is to assume that the fluid
velocity at the wetting line, and the wetting line velocity itself, have the same normal
component with respect to the substrate. The tangential component of the fluid velocity
remains unaffected and is equivalent to the tangential component of the substrate velocity.
Furthermore, for most practical problems in three dimensions, the dynamic contact angle must
vary along at three-dimensional wetting line simply because the motion of the wetting line with
respect to the substrate also changes. A model of the contact angle must allow a range of
contact angles based upon the local rate of advancement or recession.

These modifications of the standard two-dimensional dynamic contact line formulation
allow successful solution of the problems presented in this paper. The pseudo-solid approach
to mesh motion, as explained in Part I [1], has shown considerable promise in three
dimensions. Its ability to precisely locate the free surface and the wetting line has been
instrumental in being able to apply these specialized and highly localized wetting line boundary
conditions.

The sliding droplet computation represents an obvious application of our approach. It was
observed that fluid would tend to shift to the downhill side of the droplet as time progressed.
Further, the entire droplet became stretched in the flow direction but contracted in the
direction transverse to the flow. Combined these effects resulted in the planform profile of the
droplet evolving from an initial circular shape into the classic ‘tear drop’ shape. Another
contact angle model, in particular one that included critical contact angle behavior, would
result in a different shape [13]. We note also that at later times a hump of fluid appeared just
in advance of the trailing edge. However, because the mesh there had become considerably
distorted, we were unable to conclude that this was a true feature.

The bead laydown results have provided an opportunity to examine the shape of the wetting
line to changes in operating and/or physical parameters. In general, the contact line was
parabolic in form in the vicinity of the nozzle but evolving into a straight line parallel to the
web motion downstream. Changing the flow rate did not alter this basic pattern except that for
larger inlet velocities the contact line would become broader and further from the nozzle. We
did note an important effect of surface tension on the downstream contact line behavior. For
relatively large values of surface tension, the contact line would contract back towards the
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centerline plane accompanied by the rise of the free surface ridgeline behind the nozzle. This
imparted a ‘paddle’ shape to the overall contact line. As the surface tension decreased, this
effect diminished. The static contact angle, however, had the most dramatic effect on the
contact line shape. The smaller this parameter the further the contact line would spread
downstream of the nozzle. Its effect was less pronounced in the region near the nozzle where
the effects of the nozzle itself still dominate.

A number of issues still remain. The primary focus of this paper was development of an
appropriate method for treating three-dimensional free surface problems with static and
dynamic wetting lines. Having accomplished that, the next step is to address its deficiencies.
The lack of stability of the free surface at higher capillary numbers is probably a result of
inappropriately shaped elements. However, this premise needs to be verified on a better mesh.
The lack of agreement with respect to the experimental visualization results is unfortunate but
not unexpected given the focus on development of a numerical method. Better meshes and
more appropriate contact angle models should improve agreement.

Nonetheless, the impact of these results should not be minimized. Static contact lines in
three dimensions have received only a small amount of attention and dynamic contact lines
even less. This should be contrasted with the vast amount of literature pertaining to
two-dimensional dynamic contact lines. This paper represents a first in computational fluid
mechanics in that there are few if any other computational studies of three-dimensional
dynamic wetting lines. We believe that we have laid the theoretical and computational
groundwork for continued exploration and development of this new area of computational
science.
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